

Contents

Executive Summary	1
Introduction & Problem Statement	4
Systems Overview	6
Systems Performance Summary	7
Observations	7
Packet Completion Rate – System Level	7
Packet Completion Rate – Per Sensor	8
Rogers System Sensors	8
Sunrise System Sensors	8
Longview System Sensors	8
Spreading Factor Analysis	9
Systems Performance Detailed Analysis	13
Longview System Performance over Time	13
Rogers System Performance over Time	15
Sunrise System Performance over Time	16
Appendix A - Performance Measurement Methodology	19
Appendix B – System and Individual Sensor Performance Graphs for the Longview System	21
Appendix C – System and Individual Sensor Performance Graphs for the Sunrise System	
Appendix D – System and Individual Sensor Performance Graphs for the Rogers System	34
Appendix E – Data Files	

Executive Summary

Hitechdb, a Helium partner, has 3 systems on the Helium network, consisting of various Browan sensors. All 3 systems exhibited similar behavior, namely that performance, as defined by Packet Completion Percentage, declined from near 100% to 20-30% within 18 – 23 days of system deployment. Performance has remained at the low level ever since.

After a detailed analysis of the log data, it appears that the root cause of the decline in performance is tied to change in spreading factor. Specifically,

- When the sensor is activated, the SF starts at 7 then over time increments to 10
- Shortly after achieving a spreading factor of 10, the packet completion rate for the sensor drops dramatically

The charts below for sensor TBHH100_6 demonstrate this phenomenon.

This rest of this report contains the data analysis and is organized into the following sections:

• Systems Overview: describes the makeup of the 3 systems, including location, sensor, and gateway details

1

Mike Boucher – Hitechdb LLC

HITECHDB – Sense Your World™

Oct. 11, 2021

- Systems Performance Summary: describes the overall performance of each of the 3 systems
- Observations: provides a high level summary of observations after reviewing the system and sensor graphs
- Systems Performance Detailed Analysis: detailed performance analysis of each sensor in each system
- Appendix A: performance Measurement Methodology: explains how performance is measured
- Appendix B: performance graphs for the Longview System
- Appendix C: performance graphs for the Sunrise System
- Appendix D: performance graphs for the Rogers System
- Appendix E: information on the data files used in the analysis

This report and the supporting data files can be obtained from the following location: <u>https://github.com/mikedsp/helium/tree/master/Browan%20Sensor%20Performance%20Analysis%20on%20the%20Hel</u> <u>ium%20Network</u>

For questions on this report, please contact Mike Boucher at mikeb@hitechdb.com

Introduction & Problem Statement

Hitechdb LLC is an IoT consulting company that designs and deploys IoT monitoring solutions using the Helium network. The first production system (Longview) was deployed in May and initially worked as expected, with sensor data updating on the dashboard at least once per hour. After several weeks, however, there started to be long gaps in time between data updates for sensors on the dashboard. The screenshot below shows an example; specifically sensor TBHH100_7, which was last updated on the dashboard 14 hours previously and sensor TBHH100_8 which was last updated on the dashboard 12 hours previously. Both of these sensors are programmed to send a measurement every hour – or more often if temperature or humidity changes occur.

_ongview											
Consolidated View Great Room	East Cabin North Cabin	Workout Roor	m Air Handler	Attic West Air Handler	Attic East Air Handler	Attic Dehumidifie	r				
Great Room											
Sensor ID: TBHV110_4	Temperature 3 minutes ago	61 °F	Humidity 3 minutes ago	53 %	Air Quality Status 3 minutes ago		Excellent	Battery Voltage 3 minutes ago	3.5 V		
East Cabin											
Sensor ID: TBHH100_8	12 hours ago	61 °F	Humidity 12 hours ago	64 %	Battery Voltage 12 hours ago	3.6 V					
North Cabin											
Sensor ID: TBHH100_7	Temperature 14 hours ago	61 °F	Humidity 14 hours ago	75 %	Battery Voltage 14 hours ago	3.6 V					
Workout Room Air	Handler										
Sensor ID: TBWL100_10	Temperature 21 minutes ago	68 °F	Humidity 21 minutes ag	o 46 %	Water Leak 21 minutes ago		No Leak Det	ected 😑	Battery Voltage 21 minutes ago	3.6	
Attic West Air Handler											
Sensor ID: TBWL100_7	Temperature 10 hours ago	70 °F	Humidity 10 hours ago	42 %	Water Leak 10 hours ago		No Leak Det	ected 😑	Battery Voltage 10 hours ago	3.6	

One of the purposes of the Longview system is to alert the client to adverse conditions so that corrective/preventative action can be taken. For this reason, a delay of 12 hours is not acceptable as significant property damage could occur during that time.

For example, for the 2 Cabins the sensors are monitoring the conditions inside the cabins. If the cabin's HVAC system is out of order during the winter and the temperature gets below freezing, pipes may burst. Another example is the water leak sensors on the Air Handlers in the attic of the main house. If there is excessive water build up in the Air Handler drain pans, water could overflow and cause damage to the home's ceiling.

To understand the root cause of the gaps in sensor data updates on the dashboard, Hitechdb initiated a detailed investigation that involved

- Bringing 2 additional production systems online
- Increasing system data logging capability
- Performing a detailed analysis of the data in the logs
- Documenting the results of the data analysis

This report contains the results of the data analysis and is organized into the following sections:

- Systems Overview: describes the makeup of the 3 systems, including location, sensors, and gateway details
- Systems Performance Summary: describes the overall performance of each of the 3 systems
- Observations: provides a high level summary of observations after reviewing the system and sensor graphs
- Systems Performance Detailed Analysis: performance analysis of each sensor in each system
- Appendix A: performance Measurement Methodology: explains how performance is measured

Mike Boucher – Hitechdb LLC

- Appendix B: performance graphs for the Longview System
- Appendix C: performance graphs for the Sunrise System
- Appendix D: performance graphs for the Rogers System
- Appendix E: information on the data files used in the analysis

Systems Overview

Hitechdb has 3 production systems built with Browan sensors. An overview of each production system is provided in the table below. Two of the systems are using Helium's VIP Console, which is restricted to Helium partners. The other system uses the standard Helium Production Console which is available to all Helium network users.

System Name	Site Description	Helium Console System	Location	System Build Date	System Deploy Date	Sensors	LoRa Gateway(s)
Longview	2500sf home with 2 cabin outbuildings on the property	Production	Starkville, MS	5/10/21	5/24/21	TBHV110_4 TBHH100_7 TBHH100_8 TBWL100_7 TBWL100_8 TBWL100_9 TBWL100_10	restless-champagne-orca
Rogers	2500sf home	VIP	Rogers, AR	8/5/21	8/17/21	TBHV110_5 TBHH100_5 TBWL100_5 TBWL100_6	dizzy-eggplant-corgi (primary) bald-pineapple-wren
Sunrise	2500sf home	VIP	Davis, CA	8/9/21	8/21/21	TBHV110_6 TBHH100_6	best-pearl-aardvark

Table 1 – Hitechdb Systems Overview

Systems Performance Summary

System performance is measured by packet completion percentage (PC%), which is the percentage of packets sent by the sensors in the system that are received by the Helium network. If every packet sent by the system sensors is received by the Helium network, then the Packet Completion rate for the system is 100%.

Packet Completion Percentage = (# Packets Received) / (# Packets Sent)

The Longview, Rogers, and Sunrise systems all show a similar pattern of starting out with PC rate near 100%, then tailing off to 13 or 14% after several weeks of operation.

Table 2 shows the initial and steady state PC% for each of the three systems. Initial daily PC% is the average performance for the first few weeks the system was online. The steady state daily PC% is the performance of the system after several weeks of operation. The next section of the document has a detailed explanation of how performance is calculated. Table 3 shows the performance over time for each system.

Hitechdb Systems Performance Summary									
System Name	Initial Daily PC%	Steady State Daily PC%							
Longview	~100%	~14%							
Rogers	~100%	~13%							
Sunrise	~100%	~14%							

Table 2 – Systems Performance Summary

Table 3 – Performance Over Time for the Longview, Rogers, and Sunrise Systems

Observations

Packet Completion Rate – System Level

Packet Completion rate for all 3 systems showed the same pattern – starting near 100% then declining to ~13% after a few weeks

- Longview ~23 days of good performance
- Rogers ~23 days of good performance
- Sunrise ~18 days of good performance

Packet Completion Rate - Per Sensor

Every sensor in each of the 3 systems exhibited a similar pattern. The PC rate would hover near 100% for a period of time, then would drop to and remain under 20%. One sensor, TBHV110_4 declined over a period of 5-10 days; the rest declined within a span of 1 to 2 days.

The length of time before the PC rate dropped (i.e. the # of days of good performance) varied across the sensors in the system. The sensor with the shortest duration of good performance was sensor TBHV110_6 in the Sunrise system, with duration of 15 days. The sensor with the longest duration of good performance was sensor TBWL100_8 in the Longview system with duration of 44 days. The average duration of good performance was 29 days.

Rogers System Sensors

For the sensors in the Rogers system, the table below shows the date where each sensor's performance dropped as well as the # of good days of performance.

Rogers System – Key Sensor Dates											
Sensor	Helium Network	Deployment	Start of	# of Days of							
	Activation Date	Date	Performance	Good							
			Decline	Performance							
TBWL100_5	8/4/21	8/17/21	8/31/21	27							
TBWL100_6	8/4/21	8/17/21	8/31/21	27							
TBHH100_5	8/3/21	8/17/21	9/3/21	31							
TBHV110_5	8/8/21	8/17/21	8/27/21	19							

Sunrise System Sensors

For the sensors in the Sunrise system, the table below shows the date where each sensor's performance dropped as well as the # of good days of performance.

Sunrise System – Key Sensor Dates										
Sensor	Helium Network	Deployment Date	Start of Performance	# of Days of Good						
	Activation Date	Dute	Decline	Performance						
TBHH100_6	8/9/21	8/21/21	9/3/21	25						
TBHV110_6	8/12/21	8/21/21	8/27/21	15						

Longview System Sensors

For the sensors in the Longview system, the table below shows the date where each sensor's performance dropped as well as the # of good days of performance.

Longview System – Key Sensor Dates										
Sensor Helium Network Deployment Start of # of Days of										
8										

	Activation Date	Date	Performance	Good
			Decline	Performance
TBWL100_7	5/11/21	5/24/21	6/6/21	26
TBWL100_8	5/11/21	5/24/21	6/24/21	44
TBWL100_9	5/11/21	5/24/21	5/30/21	19
TBWL100_10	5/12/21	5/24/21	6/3/21	22
TBHH100_7	5/10/21	5/24/21	6/18/21	39
TBHH100_8	5/10/21	5/24/21	6/26/21	47
TBHV110_4	5/8/21	5/24/21	6/25/21	48

Spreading Factor Analysis

When looking at RSSI, SNR, and Spreading Factor (SF) data from the sensor logs, a strong correlation is seen between the SF value and the packet completion rate. Specifically, the following two observations apply to every sensor in the Rogers and Sunrise systems:

- When the sensor is activated, the SF starts at 7 then over time increments to 10
- Shortly after achieving a spreading factor of 10, the packet completion rate drops dramatically

The charts below for sensor TBHH100_6 are an example of this phenomenon.

The observations most likely apply to the sensors in the Longview system, but because spreading factor was not being captured in the logs for the first few months of operation, there is SF data to analyze

Oct. 11, 2021

For most, but not all sensors, the RSSI and SNR performance degrades shortly after the spreading factor reaches 10. The charts above for sensor TBHH100_6 demonstrate this phenomenon.

The charts below for sensor TBWL100_5 show a sensor where the RSSI and SNR performance does not degrade once the spreading factor reaches 10.

Systems Performance Detailed Analysis

Longview System Performance over Time

Chart 1 shows the aggregate PC% for the sensors in the Longview system. The system was constructed in Dacula, GA between 5/10 and 5/19, and then was transported to and deployed in Starkville, MS on 5/24.

From the time the system was constructed up through the first week of deployment (i.e. from 5/10 - 5/30), with the exception of the week of 5/19-5/25 when the Helium Network was having trouble, the PC rate was near 100%.

After starting with a PC rate near 100% on 5/10, the rate started trending downward from 6/2 – 6/27 after which the PC rate settled out at around 14%.

The Longview system is located in Starkville, MS and is served by RAK hotspot, restless-champagne-orca, which is located at the site and was deployed on the same date as the sensors. Restless-champagne-orca was initially set up and synchronized to the Helium blockchain on 5/19 in Dacula, GA, then transported along with the sensors to the Longview site on 5/24. The hotspot maintained synch with the blockchain during transport.

The log file, 20211019_Log_Longview_SensorDataFlow.xlsx, shows the Longview sensor data received through the Helium network. Included in the data log is the hotspot name that transmitted the data (column F). The log shows that all sensors in the Longview system flow through restless-champagne-orca. You can see this in Screenshot 1 (below). Note that the Longview log was not set up until July, so does not contain data during the system setup and initial deployment.

Chart 1 – Longview Packet Completion Rate over time (Chart taken from the 'Longview Performance' tab in 20210911_Hotspot and DC Tracker.xlsx)

la.	Α	В	С	D	E	F	G	Н	1	J	K	L
1 UTC Time		(America/NewYork)	(Local Time)	From Device	Frame Count	Hotspot	Channel	Frequency	Hold Tiime	RSSI	SNR	Spreading
128	7-9-2021 19:42:41	7-9-2021 15:42:42	7-9-2021 15:42:35	TBHV110_4	13259	restless-champagne-orca	11	904.5	1490	-89	11.50	SF10BW125
129	7-9-2021 19:47:40	7-9-2021 15:47:41	7-9-2021 15:47:35	TBHV110_4	13260	restless-champagne-orca	12	904.7000122	842	-88	11.80	SF10BW125
130	7-9-2021 20:27:56	7-9-2021 16:27:56	7-9-2021 16:27:54	TBWL100_8	1457	restless-champagne-orca	9	904.0999756	1578	-54	12.80	SF10BW125
131	7-9-2021 21:17:43	7-9-2021 17:17:43	7-9-2021 17:17:37	TBHV110_4	13278	restless-champagne-orca	8	903.9000244	1765	-93	10.00	SF10BW125
132	7-9-2021 23:07:48	7-9-2021 19:07:48	7-9-2021 19:07:41	TBHV110_4	13286	restless-champagne-orca	10	904.2999878	4205342	-94	9.50	SF10BW125
133	7-10-2021 0:22:46	7-9-2021 20:22:46	7-9-2021 20:22:40	TBHV110_4	13315	restless-champagne-orca	9	904.0999756	1382	-89	11.00	SF10BW125
134	7-10-2021 0:32:46	7-9-2021 20:32:47	7-9-2021 20:32:40	TBHV110_4	13317	restless-champagne-orca	15	905.2999878	1476	-88	11.50	SF10BW125
135	7-10-2021 1:02:48	7-9-2021 21:02:48	7-9-2021 21:02:41	TBHV110_4	13323	restless-champagne-orca	11	904.5	1833	-90	10.50	SF10BW125
136	7-10-2021 1:07:47	7-9-2021 21:07:47	7-9-2021 21:07:41	TBHV110_4	13324	restless-champagne-orca	12	904.7000122	1504	-90	10.80	SF10BW125
137	7-10-2021 2:37:48	7-9-2021 22:37:48	7-9-2021 22:37:42	TBHV110_4	13342	restless-champagne-orca	8	903.9000244	728	-91	11.50	SF10BW125
138	7-10-2021 3:16:27	7-9-2021 23:16:27	7-9-2021 23:16:26	TBHH100_8	2033	restless-champagne-orca	9	904.0999756	1608	-97	9.50	SF10BW125
139	7-10-2021 3:17:48	7-9-2021 23:17:49	7-9-2021 23:17:43	TBHV110_4	13350	restless-champagne-orca	10	904.2999878	964	-91	9.80	SF10BW125
140	7-10-2021 3:37:26	7-9-2021 23:37:26	7-9-2021 23:37:25	TBHH100_8	2035	restless-champagne-orca	15	905.2999878	1460	-96	11.00	SF10BW125
141	7-10-2021 4:27:51	7-10-2021 0:27:51	7-10-2021 0:27:44	TBHV110_4	13364	restless-champagne-orca	14	905.0999756	1722	-87	11.50	SF10BW125
142	7-10-2021 4:39:21	7-10-2021 0:39:22	7-10-2021 0:39:20	TBHH100_8	2041	restless-champagne-orca	11	904.5	1437	-95	9.80	SF10BW125
143	7-10-2021 5:42:47	7-10-2021 1:42:47	7-10-2021 1:42:46	TBHH100_8	2042	restless-champagne-orca	12	904.7000122	1889634	-96	8.80	SF10BW125
144	7-10-2021 5:42:47	7-10-2021 1:42:48	7-10-2021 1:42:46	TBWL100_8	1466	restless-champagne-orca	12	904.7000122	880881	-54	12.50	SF10BW125
145	7-10-2021 5:42:52	7-10-2021 1:42:52	7-10-2021 1:42:46	TBHV110_4	13379	restless-champagne-orca	9	904.0999756	2074	-91	11.50	SF10BW125
146	7-10-2021 5:46:40	7-10-2021 1:46:40	7-10-2021 1:46:38	TBWL100_10	1465	restless-champagne-orca	14	905.0999756	1267	-67	13.00	SF10BW125
147	7-10-2021 5:52:52	7-10-2021 1:52:53	7-10-2021 1:52:46	TBHV110_4	13381	restless-champagne-orca	15	905.2999878	1895	-87	11.20	SF10BW125
148	7-10-2021 6:22:55	7-10-2021 2:22:55	7-10-2021 2:22:48	TBHV110_4	13387	restless-champagne-orca	11	904.5	3527	-91	10.20	SF10BW125
149	7-10-2021 6:27:52	7-10-2021 2:27:53	7-10-2021 2:27:46	TBHV110_4	13388	restless-champagne-orca	12	904.7000122	1442	-90	10.50	SF10BW125
150	7-10-2021 6:47:58	7-10-2021 2:47:59	7-10-2021 2:47:57	TBWL100_7	1461	restless-champagne-orca	9	904.0999756	1529	-64	13.20	SF10BW125
151	7-10-2021 7:15:08	7-10-2021 3:15:08	7-10-2021 3:15:06	TBWL100_9	1445	restless-champagne-orca	8	903.9000244	1506	-90	11.00	SF10BW125
152	7-10-2021 7:57:54	7-10-2021 3:57:55	7-10-2021 3:57:48	TBHV110_4	13406	restless-champagne-orca	8	903.9000244	1736	-92	11.00	SF10BW125
153	7-10-2021 9:47:52	7-10-2021 5:47:53	7-10-2021 5:47:50	TBWL100_7	1463	restless-champagne-orca	15	905.2999878	3591798	-64	13.00	SF10BW125
154	7-10-2021 9:47:56	7-10-2021 5:47:56	7-10-2021 5:47:50	TBHV110_4	13414	restless-champagne-orca	10	904.2999878	4202822	-90	9.20	SF10BW125
155	7-10-2021 9:48:03	7-10-2021 5:48:03	7-10-2021 5:47:50	TBHV110_4	13418	restless-champagne-orca	13	904.9000244	3002759	-87	11.00	SF10BW125
156	7-10-2021 9:48:09	7-10-2021 5:48:10	7-10-2021 5:47:50	TBHV110_4	13428	restless-champagne-orca	14	905.0999756	2052	-88	12.00	SF10BW125
157	7-10-2021 11:02:58	7-10-2021 7:02:58	7-10-2021 7:02:51	TBHV110_4	13443	restless-champagne-orca	9	904.0999756	1534	-92	10.50	SF10BW125
158	7-10-2021 11:13:01	7-10-2021 7:13:02	7-10-2021 7:12:55	TBHV110_4	13445	restless-champagne-orca	15	905.2999878	5496	-87	11.00	SF10BW125
159	7-10-2021 11:42:57	7-10-2021 7:42:58	7-10-2021 7:42:52	TBHV110_4	13451	restless-champagne-orca	11	904.5	1377	-90	10.50	SF10BW125
160	7-10-2021 13:17:59	7-10-2021 9:18:00	7-10-2021 9:17:53	TBHV110_4	13452	restless-champagne-orca	12	904.7000122	5402903	-91	11.20	SF10BW125
161	7-10-2021 13:18:06	7-10-2021 9:18:07	7-10-2021 9:17:53	TBHV110_4	13470	restless-champagne-orca	8	903.9000244	1484	-92	11.00	SF10BW125
162	7-10-2021 13:58:01	7-10-2021 9:58:01	7-10-2021 9:57:54	TBHV110_4	13478	restless-champagne-orca	10	904.2999878	1541	-92	9.80	SF10BW125
163	7-10-2021 14:18:03	7-10-2021 10:18:04	7-10-2021 10:17:55	TBHV110_4	13482	restless-champagne-orca	13	904.9000244	1418	-95	10.20	SF10BW125
164	7-10-2021 14:48:10	7-10-2021 10:48:10	7-10-2021 10:48:09	TBWL100_7	1469	restless-champagne-orca	11	904.5	1546	-67	11.50	SF10BW125
165	7 40 0004 45 00.04	7 40 0004 44-00-00	7 40 0004 44 07 55	TDU0/440_4	42400	seatters about the second		005 0000755	4400	00	40.00	0540014/405

Screenshot 1 – Sensor Data from the Longview System

(Screenshot taken from the 'LongviewData' tab in 20211019_Log_Longview_SensorDataFlow.xlsx)

14

Mike Boucher – Hitechdb LLC

Rogers System Performance over Time

Chart 2 shows the aggregate PC% for the sensors in the Rogers system. The system was constructed in Dacula, GA between 8/5 - 8/7, and then was transported to and deployed in Rogers, AR on 8/17.

From the time the system was constructed up through the first week of deployment (i.e. from 8/7 - 8/27), the PC% was near 100%. The PC% dip on 8/18 is due to the system being transported on 8/17.

After starting with a PC rate near 100% on 8/5, the rate started trending downward from 8/28 – 9/7 after which the rate settled out at around 13%.

The Rogers system is located in Rogers, AR and is served primarily by RAK hotspot, dizzy-eggplant-corgi, which is located at the site and was deployed on the same date as the sensors. Dizzy-eggplant-corgi was initially set up and synchronized to the Helium blockchain between 8/5 and 8/7 in Dacula, GA, then transported to Rogers, AR on 8/17. The hotspot resynched with the Helium blockchain on 8/18.

The log file, 20211012_Log_RogersHome_SensorDataFlow.xlsx, shows the system sensor data received through the Helium network. Included in the data log is the hotspot name that transmitted the data (column F). The log shows that once the hotspot completed synching on 8/18, most of the sensor data flows through dizzy-eggplant-corgi. You can see this in Screenshot 2 (below).

Chart 2 – Rogers Packet Completion Rate over time (Chart taken from the 'Rogers System Performance' tab in 20210922_Hotspot and DC Tracker - VIP.xlsx) 15

Mike Boucher – Hitechdb LLC

	A	4	В	С	D	E	F		G	Н	I	J	K	L
1	UTC Time	•	(America/NewYork) 💌	(Local Time)	From Device	Frame Cour -	Hotspot	-	Channel 💌	Frequency 💌	Hold Tiime 🔻	RSSI ×	SNR -	Spreading *
3188	8-18-2021	15:57:24	8-18-2021 11:57:24	8-18-2021 11:57:2	3 TBHV110_5	2889	dizzy-eggplant-corgi		8	903.9000244	719	-65	14.20	SF8BW125
3189	8-18-2021	16:02:31	8-18-2021 12:02:32	8-18-2021 12:02:3	0 TBHH100_5	412	dizzy-eggplant-corgi		11	904.5	208	-70	13.20	SF7BW125
3190	8-18-2021	16:02:35	8-18-2021 12:02:35	8-18-2021 12:02:2	3 TBHV110_5	2890	dizzy-eggplant-corgi		10	904.2999878	196	-66	11.00	SF8BW125
3191	8-18-2021	16:07:23	8-18-2021 12:07:24	8-18-2021 12:07:2	3 TBHV110_5	2891	dizzy-eggplant-corgi		13	904.9000244	200	-65	14.20	SF8BW125
3192	8-18-2021	16:10:28	8-18-2021 12:10:28	8-18-2021 12:10:2	7 TBWL100_6	276	dizzy-eggplant-corgi		15	905.2999878	203	-72	13.20	SF7BW125
3193	8-18-2021	16:12:24	8-18-2021 12:12:24	8-18-2021 12:12:2	3 TBHV110_5	2892	dizzy-eggplant-corgi		14	905.0999756	296	-68	15.80	SF8BW125
3194	8-18-2021	16:17:24	8-18-2021 12:17:24	8-18-2021 12:17:2	3 TBHV110_5	2893	dizzy-eggplant-corgi		9	904.0999756	243	-66	13.80	SF8BW125
3195	8-18-2021	16:20:09	8-18-2021 12:20:10	8-18-2021 12:20:0	B TBWL100_5	273	dizzy-eggplant-corgi		15	905.2999878	201	-67	13.50	SF7BW125
3196	8-18-2021	16:22:24	8-18-2021 12:22:24	8-18-2021 12:22:2	3 TBHV110_5	2894	dizzy-eggplant-corgi		15	905.2999878	201	-70	14.20	SF8BW125
3197	8-18-2021	16:27:24	8-18-2021 12:27:24	8-18-2021 12:27:2	3 TBHV110_5	2895	dizzy-eggplant-corgi		11	904.5	213	-67	13.50	SF8BW125
3198	8-18-2021	16:32:24	8-18-2021 12:32:25	8-18-2021 12:32:2	3 TBHV110_5	2896	bald-pineapple-wren		12	904.7000122	508	-112	-8.80	SF8BW125
3199	8-18-2021	16:37:24	8-18-2021 12:37:24	8-18-2021 12:37:2	3 TBHV110_5	2897	dizzy-eggplant-corgi		8	903.9000244	268	-66	14.00	SF8BW125
3200	8-18-2021	16:42:25	8-18-2021 12:42:26	8-18-2021 12:42:2	4 TBHV110_5	2898	dizzy-eggplant-corgi		10	904.2999878	566	-66	10.80	SF8BW125
3201	8-18-2021	16:47:24	8-18-2021 12:47:25	8-18-2021 12:47:2	3 TBHV110_5	2899	dizzy-eggplant-corgi		13	904.9000244	259	-68	14.20	SF8BW125
3202	8-18-2021	16:52:24	8-18-2021 12:52:25	8-18-2021 12:52:2	3 TBHV110_5	2900	dizzy-eggplant-corgi		14	905.0999756	255	-72	13.80	SF8BW125
3203	8-18-2021	16:57:25	8-18-2021 12:57:25	8-18-2021 12:57:2	4 TBHV110_5	2901	dizzy-eggplant-corgi		9	904.0999756	913	-67	16.00	SF8BW125
3204	8-18-2021	17:02:25	8-18-2021 13:02:25	8-18-2021 13:02:2	4 TBHV110_5	2902	bald-pineapple-wren		15	905.2999878	528	-113	-9.20	SF8BW125
3205	8-18-2021	17:02:40	8-18-2021 13:02:41	8-18-2021 13:02:4	0 TBHH100_5	413	dizzy-eggplant-corgi		12	904.7000122	268	-69	13.00	SF7BW125
3206	8-18-2021	17:07:24	8-18-2021 13:07:25	8-18-2021 13:07:2	4 TBHV110_5	2903	dizzy-eggplant-corgi		11	904.5	286	-67	14.00	SF8BW125
3207	8-18-2021	17:10:29	8-18-2021 13:10:30	8-18-2021 13:10:2	8 TBWL100_6	277	dizzy-eggplant-corgi		11	904.5	270	-71	14.20	SF7BW125
3208	8-18-2021	17:12:25	8-18-2021 13:12:25	8-18-2021 13:12:2	4 TBHV110_5	2904	dizzy-eggplant-corgi		12	904.7000122	263	-70	15.80	SF8BW125
3209	8-18-2021	17:17:25	8-18-2021 13:17:25	8-18-2021 13:17:2	4 TBHV110_5	2905	dizzy-eggplant-corgi		8	903.9000244	265	-65	16.00	SF8BW125
3210	8-18-2021	17:20:11	8-18-2021 13:20:12	8-18-2021 13:20:1	0 TBWL100_5	274	bald-pineapple-wren		11	904.5	557	-114	-8.50	SF7BW125
3211	8-18-2021	17:22:25	8-18-2021 13:22:25	8-18-2021 13:22:2	4 TBHV110_5	2906	dizzy-eggplant-corgi		10	904.2999878	265	-65	11.80	SF8BW125
3212	8-18-2021	17:27:25	8-18-2021 13:27:26	8-18-2021 13:27:2	4 TBHV110_5	2907	dizzy-eggplant-corgi		13	904.9000244	268	-71	14.20	SF8BW125
3213	8-18-2021	17:32:25	8-18-2021 13:32:26	8-18-2021 13:32:2	5 TBHV110_5	2908	dizzy-eggplant-corgi		14	905.0999756	808	-65	14.00	SF8BW125
3214	8-18-2021	17:37:25	8-18-2021 13:37:26	8-18-2021 13:37:2	4 TBHV110_5	2909	dizzy-eggplant-corgi		9	904.0999756	283	-66	13.80	SF8BW125
3215	8-18-2021	17:42:25	8-18-2021 13:42:26	8-18-2021 13:42:2	4 TBHV110_5	2910	dizzy-eggplant-corgi		15	905.2999878	337	-70	14.20	SF8BW125
3216	8-18-2021	17:47:26	8-18-2021 13:47:26	8-18-2021 13:47:2	5 TBHV110_5	2911	dizzy-eggplant-corgi		11	904.5	576	-64	14.00	SF8BW125
3217	8-18-2021	17:52:25	8-18-2021 13:52:26	8-18-2021 13:52:2	4 TBHV110_5	2912	dizzy-eggplant-corgi		12	904.7000122	281	-66	14.00	SF8BW125
3218	8-18-2021	17:57:26	8-18-2021 13:57:27	8-18-2021 13:57:2	5 TBHV110_5	2913	dizzy-eggplant-corgi		8	903.9000244	914	-62	14.00	SF8BW125

Screenshot 2 – Sensor Data from the Rogers System

(Screenshot taken from the 'RogersData' tab in 20211012_Log_RogersHome_SensorDataFlow.xlsx)

1

Sunrise System Performance over Time

Chart 3 shows the aggregate PC% for the sensors in the Sunrise system. The system was constructed in Dacula, GA between 8/9 and 8/11, with the sensors transported to Rogers, AR on 8/17, and then transported to and deployed in Davis, CA on 8/21.

From the time the system was constructed up through the first week of deployment in Davis, CA (i.e. from 8/11 - 8/27), the PC% was near 100%. The PC% dips on 8/18 and 8/22 are due to the system being transported.

After starting with a PC rate near 100% on 8/9, the rate started trending downward from 8/28 – 9/13 after which the rate settled out at around 13%.

The Sunrise system is located in Davis, CA and is served by a single by RAK hotspot, best-pearl-aardvark, which is located at the Sunrise site. Best-pearl-aardvark was initially set up and synchronized to the Helium blockchain in July in Dacula, GA. The hotspot was sent to Davis CA on 8/3, then setup and resynched to the Helium blockchain on 8/17. The sensors were deployed in Davis on 8/21.

The log file, 20211013_Log_SunriseFamilyFarm_SensorDataFlow.xlsx, shows the system sensor data received through the Helium network. Included in the data log is the hotspot name that transmitted the data (column F). The log shows that once the sensors were deployed in Davis late in the day on 8/21, all sensor data is flowing through hotspot best-pearl-aardvark. You can see this in Screenshot 3 (below).

Chart 3 – Sunrise Packet Completion Rate over time

(Chart taken from the 'Sunrise System Performance' tab in 20210922_Hotspot and DC Tracker - VIP.xlsx)

Log_SunriseFamilyFarm_SensorDataFlow 🔅 🗈 👁

File Edit View Insert Format Data Tools Add-ons Help Last edit was 8 minutes ago

🇠 🛥 🖶 🏲 100% 👻 💲 % .0 ֲ.00 ֲ123 - Arial	- 10 - B	<i>I</i> \$ A ♦ ⊞ 55 -	Σ· ♥ Ⅲ 田 ☞ · ♥ · ┦· ± · Ξ
---	----------	------------------------	---------------------------

A1	- <i>f</i> x t	JTC Time											
	А	В	С	D	E	F	G	н	I.	J	K	L	м
1	UTC Time	Local Time (America/NewYork)	Reported At (Local Time)	From Device	Frame Count	Hotspot	Channel	Frequency	Hold Tiime	RSSI	SNR	Spreading	Hotspt Status
6751	8-23-2021 15:57:03	8-23-2021 11:57:04	8-23-2021 11:57:02	TBHV110_6	3112	best-pearl-aardvark	15	905.2999878	597	-41	14.20	SF8BW125	success
6752	8-23-2021 16:02:04	8-23-2021 12:02:04	8-23-2021 12:02:02	TBHV110_6	3113	best-pearl-aardvark	11	904.5	446	-39	15.20	SF8BW125	success
6753	8-23-2021 16:07:03	8-23-2021 12:07:04	8-23-2021 12:07:02	TBHV110_6	3114	best-pearl-aardvark	12	904.7000122	443	-40	14.50	SF8BW125	success
6754	8-23-2021 16:12:03	8-23-2021 12:12:04	8-23-2021 12:12:02	TBHV110_6	3115	best-pearl-aardvark	8	903.9000244	447	-40	15.20	SF8BW125	success
6755	8-23-2021 16:17:03	8-23-2021 12:17:04	8-23-2021 12:17:03	TBHV110_6	3116	best-pearl-aardvark	10	904.2999878	448	-40	12.50	SF8BW125	success
6756	8-23-2021 16:22:04	8-23-2021 12:22:05	8-23-2021 12:22:03	TBHV110_6	3117	best-pearl-aardvark	13	904.9000244	672	-40	14.00	SF8BW125	success
6757	8-23-2021 16:27:05	8-23-2021 12:27:05	8-23-2021 12:27:03	TBHV110_6	3118	best-pearl-aardvark	14	905.0999756	448	-40	14.50	SF8BW125	success
6758	8-23-2021 16:32:04	8-23-2021 12:32:05	8-23-2021 12:32:03	TBHV110_6	3119	best-pearl-aardvark	9	904.0999756	467	-39	15.50	SF8BW125	success
6759	8-23-2021 16:37:04	8-23-2021 12:37:05	8-23-2021 12:37:03	TBHV110_6	3120	best-pearl-aardvark	15	905.2999878	801	-41	14.00	SF8BW125	success
6760	8-23-2021 16:42:05	8-23-2021 12:42:06	8-23-2021 12:42:04	TBHV110_6	3121	best-pearl-aardvark	11	904.5	1728	-40	16.00	SF8BW125	success
6761	8-23-2021 16:47:04	8-23-2021 12:47:05	8-23-2021 12:47:03	TBHV110_6	3122	best-pearl-aardvark	12	904.7000122	1009	-40	14.00	SF8BW125	success
6762	8-23-2021 16:50:29	8-23-2021 12:50:30	8-23-2021 12:50:28	TBHH100_6	369	best-pearl-aardvark	12	904.7000122	500	-28	13.80	SF7BW125	success
6763	8-23-2021 16:52:05	8-23-2021 12:52:05	8-23-2021 12:52:04	TBHV110_6	3123	best-pearl-aardvark	8	903.9000244	823	-40	16.00	SF8BW125	success
6764	8-23-2021 16:53:03	8-23-2021 12:53:03	8-23-2021 12:53:02	BOL_4	397	best-pearl-aardvark	8	903.9000244	188	-49	14.20	SF10BW125	success
6765	8-23-2021 16:53:19	8-23-2021 12:53:20	8-23-2021 12:53:18	BOL_4	398	best-pearl-aardvark	10	904.2999878	346	-58	10.80	SF10BW125	success
6766	8-23-2021 16:53:35	8-23-2021 12:53:35	8-23-2021 12:53:34	BOL_4	399	best-pearl-aardvark	13	904.9000244	195	-59	14.00	SF10BW125	success
6767	8-23-2021 16:53:51	8-23-2021 12:53:52	8-23-2021 12:53:50	BOL_4	400	best-pearl-aardvark	14	905.0999756	346	-59	14.00	SF10BW125	success
6768	8-23-2021 16:54:07	8-23-2021 12:54:07	8-23-2021 12:54:06	BOL_4	401	best-pearl-aardvark	9	904.0999756	210	-57	13.80	SF10BW125	success
6769	8-23-2021 16:54:20	8-23-2021 12:54:21	8-23-2021 12:54:19	BOL_4	402	best-pearl-aardvark	15	905.2999878	181	-60	13.80	SF10BW125	success
6770	8-23-2021 16:57:04	8-23-2021 12:57:05	8-23-2021 12:57:03	TBHV110_6	3124	best-pearl-aardvark	10	904.2999878	669	-40	13.00	SF8BW125	success
6771	8-23-2021 17:02:05	8-23-2021 13:02:05	8-23-2021 13:02:04	TBHV110_6	3125	best-pearl-aardvark	13	904.9000244	737	-40	14.50	SF8BW125	success
6772	8-23-2021 17:07:05	8-23-2021 13:07:05	8-23-2021 13:07:04	TBHV110_6	3126	best-pearl-aardvark	14	905.0999756	843	-41	14.00	SF8BW125	success
6773	8-23-2021 17:12:06	8-23-2021 13:12:06	8-23-2021 13:12:05	TBHV110_6	3127	best-pearl-aardvark	9	904.0999756	1693	-40	14.20	SF8BW125	success
6774	8-23-2021 17:17:05	8-23-2021 13:17:06	8-23-2021 13:17:04	TBHV110_6	3128	best-pearl-aardvark	15	905.2999878	1552	-42	15.80	SF8BW125	success
6775	8-23-2021 17:22:05	8-23-2021 13:22:06	8-23-2021 13:22:04	TBHV110_6	3129	best-pearl-aardvark	11	904.5	753	-40	14.80	SF8BW125	success
6776	8-23-2021 17:27:05	8-23-2021 13:27:05	8-23-2021 13:27:04	TBHV110_6	3130	best-pearl-aardvark	12	904.7000122	797	-40	14.20	SF8BW125	success
6777	8-23-2021 17:32:05	8-23-2021 13:32:06	8-23-2021 13:32:04	TBHV110_6	3131	best-pearl-aardvark	8	903.9000244	541	-40	14.80	SF8BW125	success
6778	8-23-2021 17:37:05	8-23-2021 13:37:06	8-23-2021 13:37:04	TBHV110_6	3132	best-pearl-aardvark	10	904.2999878	863	-40	11.20	SF8BW125	success
6779	8-23-2021 17:42:05	8-23-2021 13:42:06	8-23-2021 13:42:04	TBHV110_6	3133	best-pearl-aardvark	13	904.9000244	475	-40	14.00	SF8BW125	success
6780	0 00 0001 17-17-05	0 00 0004 40-47-05	0 00 0001 10-47-04	TDUV/110 C	2124	hast page aardvark	14	005 0000755	100	44	14.00	0001//102	01100000

Screenshot 3 – Sensor Data from the Sunrise System

(Screenshot taken from the 'Data' tab in 20211013_Log_SunriseFamilyFarm_SensorDataFlow.xlsx)

Appendix A - Performance Measurement Methodology

System performance is calculated by summing the performance of each sensor in the system. Sensor performance Is measured by packet completion (PC) rate, which is the ratio of the number of packets sent by a sensor in a given time period to the number of packets received by the Helium network for that sensor in the same time period. A PC rate of100% means that every packet sent by the sensor is received by the Helium network.

Packet Completion Rate = (# Packets Received) / (# Packets Sent)

Daily Packet Completion Percentage = (# Packets Received in the last 24 hours) / (# Packets Sent in the last 24 hours)

The number of packets sent by a sensor in a given period can be calculated using the Frame Count information in the Helium Console (see Screenshot 1). Specifically, the number of packets sent by the sensor for a given period is the difference between the sensor's Frame Up values at the end and the start of the period.

Similarly, the number of packets received by the Helium network from a sensor in a given period is calculated using the Packets Transferred information in the Helium Console (see Screenshot 1). Specifically, the number of packets received from a sensor for a given period is the difference between the sensor's Packets Transferred values at the end and the start of the period.

Device Name 👙	Device EUI	*	Labels	Frame Up	\$ Frame Down 👙	Packets Transferred	÷	DC Used 👙	Date Activated	Last Connected
BOL_4 ●	58A0CB0000202400		CUS_SF×	1651	767	4516		4516	Aug 5, 2021 7:40 AM	Sep 9, 2021 2:38 AM
Gary's BOL	58A0CB00002024B8		None	5499	596	906		906	Aug 30, 2021 8:03 AM	Sep 9, 2021 5:26 AM
Mike's BOL •	58A0CB0000202381		None	6685	717	1700		1700	Aug 30, 2021 7:40 AM	Sep 9, 2021 3:04 AM
TBHH100_5 ●	58A0CB000011B46B		DatacakeIntegration × CUS_RH ×	922	142	820		820	Aug 3, 2021 6:42 AM	Sep 8, 2021 7:13 PM
TBHH100_6 ●	58A0CB000011C142		CUS_SF×	809	144	662		662	Aug 9, 2021 6:31 AM	Sep 9, 2021 12:20 AM
TBHV110_5 •	58A0CB000011E3A2			2261	322	6618		6618	Aug 8, 2021 10:52 AM	Sep 9, 2021 4:41 AM
TBHV110_6 ●	58A0CB000011E1E1		CUS_SF×	7928	163	4772		4772	Aug 12, 2021 4:29 PM	Sep 9, 2021 5:24 AM
TBWL100_5 ●	E8E1E1000104DED9			920	104	675		675	Aug 4, 2021 6:59 AM	Sep 8, 2021 3:51 PM
TBWL100_6 ●	E8E1E1000104DEDB		CUS_RH ×	795	103	651		651	Aug 4, 2021 7:00 AM	Sep 8, 2021 2:39 PM

Screenshot 1 – Frame Up and Packets Transferred information in the Helium Console

By recording the Frame Up and Packets Transferred information for each sensor every morning, a daily packet completion percentage can be calculated for each sensor. This works as long as the sensor's frame count variable is not reset. If the frame count is reset between Frame Up readings, the daily packet completion percentage calculation will be invalid for that day. This doesn't happen very often and is easily seen in the log, so that when the sensor's frame count is reset during the measurement period, the performance measurement can be discarded or ignored.

The log file, 20210922_Hotspot and DC Tracker - VIP.xlsx, is where the daily Frame Up and Packets Transferred data is recorded for the sensors in the Rogers and Sunrise systems. The log file, 20210911_Hotspot and DC Tracker.xlsx, is where the daily Frame Up and Packets Transferred data is recorded for the sensors in the Longview system. These logs also calculate the daily system performance by summing the performance of the sensors in the system.

Screenshot 2 shows an excerpt from the log file, *Hotspot and DC Tracker - VIP.xlsx*. In the screenshot, pink columns BX-CF correspond to sensor TBHV110_6. The first 4 columns for that sensor (BX - CA) are where data from the VIP Console is recorded. The last 4 columns for that sensor (CB – CF) are calculated from the present and previous day's values in columns BX – CA. The green columns at the end (CQ – CS and CU – CW) are calculated from sensor columns to the left and show the overall daily packet completion percent for the Rogers and Sunrise systems.

Screenshot 2 – from 20210922_Hotspot and DC Tracker - VIP.xlsx

Looking closely at the logs, one may notice that sometimes the PC% is greater than 100 (e.g. row 16 in Screenshot 2). This occurs when the number of Packets Transferred in the previous day is greater than the number of Frame Ups in the previous day. This is due to an ambiguity in how the Helium Console reports the Packets Transferred data. This has been reported to the Helium engineering team but no clear answer has been provided. What is known is that this phenomenon is **not** due to Multi-Packet setting nor is it obviously due to inclusion of the Frame Down messages.

Performance metrics for the Longview system is based on the data in columns GK-GM in the Devices tab of 20210911_Hotspot and DC Tracker.xlsx.

Performance metrics for the Rogers and Sunrise systems is based on the data in columns CQ-CS and CU-CW in the Devices tab of 20210922_Hotspot and DC Tracker - VIP.xlsx.


```
Oct. 11, 2021
```

Appendix B – System and Individual Sensor Performance Graphs for the Longview System

Chart B1 shows the aggregate packet completion rate over time for the sensors in the Longview system. The chart shows that the aggregate performance degraded over time. The system was built at Hitechdb and went online on 5/10/21 and was deployed to the customer site on 5/24/21

From 5/10 - 6/1 the PC rate was near 100%, except for 1 week where the Helium Network was having trouble. From 6/3 - 6/26, the PC rate was around 25%. Then from 6/26 onward, the PC% hovered around 14%.

Chart B1 – Longview Packet Completion Rate over time (Chart taken from the 'Longview Performance' tab in 20210911_Hotspot and DC Tracker.xlsx)

The remaining charts in this appendix look at individual sensor performance for each sensor in the Longview system. For each sensor, 2 different charts are provided. The data source for each chart is listed below.

- Packet Completion Rate over time
 - 20210911_Hotspot and DC Tracker.xlsx
- RSSI/SNR over time
 - o 20210908_Log_TBHH100.xlsx
 - 20210916_TBHV110-fromHelium.xlsx
 - o 20210912_Log_TBWL100.xlsx

Oct. 11, 2021

The RSSI/SNR data is the sensor signal strength read by the IoT gateway that received the sensor message. For sensor data that was not received by the gateway – i.e. lost data, there is no RSSI/SNR information.

By comparing the 2 charts, one can see if there is a correlation between packet completion rate and signal strength.

Note that because spreading factor was not being captured in the sensor logs for the Longview system during this time, there is not Spreading Factor analysis for the Longview System.

23 Mike Boucher – Hitechdb LLC

24 Mike Boucher – Hitechdb LLC

25 Mike Boucher – Hitechdb LLC

Mike Boucher – Hitechdb LLC

29 Mike Boucher – Hitechdb LLC

Appendix C – System and Individual Sensor Performance Graphs for the Sunrise System

Chart C1 shows the aggregate packet completion rate over time for the sensors in the Sunrise system. The chart shows that the aggregate performance degrades over time. The system was built at Hitechdb and went online on 8/9/21 and was deployed to the customer site on 8/21/21

From 8/9 – 8/26 the PC rate was near 100%, except for 8/18 and 8/22. The performance decline on 8/18 and 8/22 was due to the sensors being in transit on 8/17 and then again on 8/21. Between 8/27 and 8/28 the PC rate went on a sharp decline after which it steadied out around 14%. Starting on 8/22, the sensors are connecting to the Helium network via a single hotspot, best-pearl-aardvark, which is located at the Sunrise site.

Chart C1 – Sunrise Packet Completion Rate over time (Chart taken from the 'Sunrise System Performance' tab in 20210922_Hotspot and DC Tracker - VIP.xlsx)

The remaining charts in this appendix look at individual sensor performance for the sensors in the Sunrise system. For each sensor, 2 different charts are provided. The data source for each chart is listed below.

- Packet Completion Rate over time
 - 20210922_Hotspot and DC Tracker VIP.xlsx

- RSSI/SNR/Spreading Factor over time
 - 20211013_Log_SunriseFamilyFarm_SensorDataFlow.xlsx

The RSSI/SNR/SF data is read by the IoT gateway that received the sensor message. For sensor data that was not received by the gateway – i.e. lost data, there is no RSSI/SNR/SF information.

Appendix D – System and Individual Sensor Performance Graphs for the Rogers System

Chart D1 shows the aggregate packet completion rate over time for the sensors in the Rogers system. The chart shows that the aggregate performance degrades over time. The system was built at Hitechdb and went online on 8/5/21 and was deployed to the customer site on 8/17 and 8/18/21

From 8/4 – 8/28 the PC rate was near 100%, except for 8/6 and 8/18. Then on 8/28 the PC rate went on a sharp decline after which it steadied out around 14%.

Chart D1 – Rogers Packet Completion Rate over time (Chart taken from the 'Rogers System Performance' tab in 20210922_Hotspot and DC Tracker - VIP.xlsx)

The remaining charts in this appendix look at individual sensor performance for the sensors in the Rogers system. For each sensor, 2 different charts are provided. The data source for each chart is listed below.

- Packet Completion Rate over time
 - 20210922_Hotspot and DC Tracker VIP.xlsx
- RSSI/SNR/Spreading Factor over time

 20211012_Log_RogersHome_SensorDataFlow.xlsx

The RSSI/SNR/SF data is read by the IoT gateway that received the sensor message. For sensor data that was not received by the gateway – i.e. lost data, there is no RSSI/SNR/SF information.

Sensor TBHH100_5

35 Mike Boucher – Hitechdb LLC

37 Mike Boucher – Hitechdb LLC

Date/Time

Appendix E – Data Files

The table below lists the log files used to derive the charts and analyses in this report. These files can be accessed in GitHub at the following location:

https://github.com/mikedsp/helium/tree/master/Browan%20Sensor%20Performance%20Analysis%20on%20the%20Hel ium%20Network

Log ID	Log File Name	Description
1	20210911_Hotspot and DC Tracker.xlsx	Daily readings of sensor statistics (Frame Up, Frame Down, Packets Transferred, and DC used) from the sensors connected to the Helium Production Console – including the sensors in the Longview System. Data is from 7/22/20 thru 9/11/21. Note that devices not used in this report have their columns hidden on the devices tab for ease of reading. Contains the Packet Completion Rate chart for the Longview system and each sensor in the system
2	20210922_Hotspot and DC Tracker – VIP.xlsx	Daily readings of sensor statistics (Frame Up, Frame Down, Packets Transferred, and DC used) from the sensors connected to the Helium VIP Console – including the sensors in the Rogers and Sunrise Systems. Data is from 8/2/21 thru 9/22/21 Contains the Packet Completion Rate chart for the Rogers and Sunrise systems and each sensor in those systems
3	20211019_Log_Longview_SensorD ataFlow.xlsx	Log of data from all sensors in the Longview system from 7/7/21 thru 10/19/21. Useful to see IoT network characteristics such as Hotspot name and sensor signal characteristics. Note that this log was started a couple months after the Longview system was deployed.
4	20211012_Log_RogersHome_Sens orDataFlow.xlsx	Log of data from all sensors in the Rogers system starting from when the system first went online through 10/12/21. Useful to see IoT network characteristics such as Hotspot name and sensor signal characteristics. Contains the sensor SNR/RSI/Spreading Factor charts for the sensors in the Rogers system
5	20211013_Log_SunriseFamilyFarm _SensorDataFlow.xlsx	Log of data from all sensors in the Sunrise system starting from when the system first went online through 10/13/21. Useful to see IoT network characteristics such as Hotspot name and sensor signal characteristics. Contains the sensor SNR/RSI/Spreading Factor charts for the sensors in the Sunrise system
6	20210908_Log_TBHH100.xlsx	Log of data from all the TBHH100 type sensors. Data is from 2/2/21 thru 9/8/21. Contains the sensor SNR/RSSI charts for the TBHH100 sensors in the Longview system: TBHH100_7 and TBHH100_8
7	20210916_TBHV110-	Log of data from all the TBHV110 type sensors. Data is from 12/26/20

	fromHelium.xlsx	thru 9/16/21.
		Contains the sensor SNR/RSSI charts for the TBHV110 sensor in the Longview system: TBHV110_4
8	20210912_Log_TBWL100.xlsx	Log of data from all the TBWL100 type sensors. Data is from 2/14/21 thru 9/12/21.
		Contains the sensor SNR/RSSI charts for the TBWL100 sensors in the Longview system: TBWL100_7, TBWL100_8, TBWL100_9, and TBWL100_10

Table D1 – Log files Used for Charting and Analysis in this Report